Robust and Efficient Solution of the Drum Problem via Nyström Approximation of the Fredholm Determinant
نویسندگان
چکیده
The “drum problem”—finding the eigenvalues and eigenfunctions of the Laplacian with Dirichlet boundary condition—has many applications, yet remains challenging for general domains when high accuracy or high frequency is needed. Boundary integral equations are appealing for large-scale problems, yet certain difficulties have limited their use. We introduce two ideas to remedy this: 1) We solve the resulting nonlinear eigenvalue problem using Boyd’s method for analytic root-finding applied to the Fredholm determinant. We show that this is many times faster than the usual iterative minimization of a singular value. 2) We fix the problem of spurious exterior resonances via a combined-field representation. This also provides the first robust boundary integral eigenvalue method for non-simply-connected domains. We implement the new method in two dimensions using spectrally accurate Nyström product quadrature. We prove exponential convergence of the determinant at roots for domains with analytic boundary. We demonstrate 13-digit accuracy, and improved efficiency, in a variety of domain shapes including a non-convex cavity shape with strong exterior resonances.
منابع مشابه
Approximation solution of two-dimensional linear stochastic Volterra-Fredholm integral equation via two-dimensional Block-pulse functions
In this paper, a numerical efficient method based on two-dimensional block-pulse functions (BPFs) is proposed to approximate a solution of the two-dimensional linear stochastic Volterra-Fredholm integral equation. Finally the accuracy of this method will be shown by an example.
متن کاملAPPROXIMATION SOLUTION OF TWO-DIMENSIONAL LINEAR STOCHASTIC FREDHOLM INTEGRAL EQUATION BY APPLYING THE HAAR WAVELET
In this paper, we introduce an efficient method based on Haar wavelet to approximate a solutionfor the two-dimensional linear stochastic Fredholm integral equation. We also give an example to demonstrate the accuracy of the method.
متن کاملThe combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملUsage of the Variational Iteration Technique for Solving Fredholm Integro-Differential Equations
Integral and integro-differential equations are one of the most useful mathematical tools in both pure and applied mathematics. In this article, we present a variational iteration method for solving Fredholm integro-differential equations. This study provides an analytical approximation to determine the behavior of the solution. To show the efficiency of the present method for our proble...
متن کاملDegenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind
Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 53 شماره
صفحات -
تاریخ انتشار 2015